- 沼气液化制取生物质LNG技术
- 周淑霞
- 1232字
- 2021-12-30 14:40:20
2.2.1 相平衡计算方程
状态方程是计算混合气体相平衡的有效方法。相平衡计算的目的是确定混合气体处于气、液平衡时压力、温度及气、液相组成之间的关系,本章利用SRK、PR方程,采用C语言编程,计算液化系统中的压缩因子、闪蒸气体的气液相平衡比,对结果采用误差分析法确定计算的正确性。
(1)逸度和逸度系数
逸度是压力、温度变化引起的Gibbs能的变化,即
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P053.jpg?sign=1739565942-qUunlNtbalMWW1fsLL3Pf9Nd9u8Juibu-0-37bd116136af5a20d1ca017f8cf6de30)
恒温下的理想气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P054.jpg?sign=1739565942-0fXvrzjG1NZJQA3MBbG9pgObt3byXVJW-0-ce458636b9a4bd225c02ffb9eddcc03a)
在恒温条件下,1mol纯气体的化学位可表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P061.jpg?sign=1739565942-Pv5k5NqellcnjTRYo7Cv8JcivqTzbG6R-0-5ca75a32adfc265c54495d3b6ad61598)
式中,μ0为标准化学位。
理想气体,则式(2-20)可写成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P060.jpg?sign=1739565942-LUfZ9Pn3M6yk53HThZIcdn2kKP2wU3N9-0-fbd01998a0d5787a2cd1af8b6693937c)
式(2-19)不适合真实气体。G.N.Lewis提出以逸度f代替压力,用在实际气体中:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P062.jpg?sign=1739565942-QHKErwiJRrWOWw2CDwbuyzrYvqlogjh8-0-3b0b5967cab851db8febe82f429325da)
当压力很低时,逸度等于压力。因此
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P065.jpg?sign=1739565942-VC6J0PFckv0cHG7qEAVRNlAtlu7NHk8L-0-64872890d0d4c53a4abc9f303edbeab4)
对于真实气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P067.jpg?sign=1739565942-6CNdjUr54vq4DcWJO4fJueHgDNQP45vd-0-771018b1f5669cdcb3c7b778daef85ca)
式中,ϕ为逸度系数,是压力p的函数。由式(2-23)可知,理想气体的逸度等于它的压力,即ϕ=1。而真实气体,ϕ可大于1,也可小于1,将式(2-22)和式(2-24)合并后可得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P059.jpg?sign=1739565942-7bqCUCoAv8kTZwSnKzxP5Ni4peCGNMx9-0-a40fa409fff882bd174c7f1b950396d8)
积分得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P064.jpg?sign=1739565942-z4OryqTycecIVEqKmPefaenOhIE0S0JZ-0-05ac00fa68d9db4f3e562d209d0c5ec8)
将代入式(2-26),并改写为:p (2-27)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P063.jpg?sign=1739565942-SZeDzgUxirdKqiEYX2xTBVlVg9XIeIkj-0-6277f9281a7ddd98076e2f09f59f6472)
当p0→0时,p0=f0,则上式变成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P058.jpg?sign=1739565942-X5uxmDIH16Y6gyns8hlZckNddDrPJpkc-0-d458b38a7b38ef152af4805468575544)
将上式改写为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P057.jpg?sign=1739565942-rNdRrWF63qZuxfSf1fTFRovuO4yXxZaS-0-832c36424c5b30915fee8547b61ceb03)
把式(2-28)右边第一项改为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P069.jpg?sign=1739565942-hU6MKkivLlx4gq7t70tyHUAeHwWeUqKa-0-e1f009885045e72fe90af66c7f9844d5)
将纯气体的PR方程代入式(2-28)得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P071.jpg?sign=1739565942-4zr56V6W3QDc8TKT9gj4Rjzqk5GWaz1z-0-9ec7c7496bc54bf0defe4e54428c7684)
合并式(2-30)和式(2-32),得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P074.jpg?sign=1739565942-1BUsVuind5Xe6ZKSdaJyQ8xKkmAmTB62-0-24f0f0b4da14a4b4f96e468322537c2b)
因为pv=ZRT,p0v0=RT,故
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P068.jpg?sign=1739565942-FcOmwzzdjiKUJ0skGfcrqEKMJzSHzROc-0-953d7552a3e8d1259a7a08b805595349)
当时p0→0、v0→∞,,
,式(2-34)可-(2-1) bv0表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P072.jpg?sign=1739565942-K4iIcPNIFfshFpuprqoQRAQ7YjzV74XP-0-c75d9c6e72c899e25aed19b8aceafd40)
又因为
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P076.jpg?sign=1739565942-OgF1Mx4IogYHYojWR8UziNgtFndGpah6-0-0ed6133971f473a762fe662de368ee73)
代入式(2-35)可得纯气体逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P070.jpg?sign=1739565942-tUpPhs0T9qJfax0YLDL7DV3Ul7gpfe0Z-0-7ab97bd0f231568691f0861ef6f25895)
气体混合物的组分逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P079.jpg?sign=1739565942-ECQByeCsBxN5xYnxBtOB73kQHPXfnbAX-0-6765fb017e46b826939277aa534ba4c6)
在温度T、组分yi不变的情况下,由式(2-19)得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P082.jpg?sign=1739565942-W3SKPXflCHfIz9YkFSVC4J7VbzK3OMv1-0-48a60edd4c789a1c8629a5b6e46d900c)
将式(2-38)代入式(2-37),即得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P084.jpg?sign=1739565942-03XoNACurkmgnDncgI4dQzPs2RO9MaKZ-0-5c8b74f1d031773ab88520dfa5300f05)
将式(2-39)从0到p积分,同时将代入上式,则得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P088.jpg?sign=1739565942-WzmeQW3QkREkXQwd6V06SD3qqXoiOEBr-0-3c80a6fbf5be8506ebc10f25a979732a)
上式改写成
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P089.jpg?sign=1739565942-CqIgxf36709n8Wu2E1eBHuRZZjsjKo1W-0-aafa28f6b8d167070243471f7cf50644)
(2)混合气体的PR方程
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P080.jpg?sign=1739565942-WXLwjq8wLoW4pvs3cfEsrJIvEhaRAU8z-0-47315972c281e11a3eedd4071e15a1b9)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P083.jpg?sign=1739565942-dc5HpCtE77Fg5P7bVPX4a8USYIqXMSnI-0-ac267d17fd6ed5ab64322b953b1c0e48)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P085.jpg?sign=1739565942-te1N2KoRY5WGZLp4HFvrm352atuIH4VJ-0-84a43aac5795a3b6198940787990d5e1)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P087.jpg?sign=1739565942-8yxD9ar2erSCaNrd5fIQsQa4U1ATwnUy-0-d5cbce6b426b680187190ab02e3cb80e)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P077.jpg?sign=1739565942-Dr5mnHZeJXmmLiRFtEwRqyDNJ3bnHpLo-0-6686226c3bce713a30feca90641e719a)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P078.jpg?sign=1739565942-ayJNF0X2L6xXJqfq3NtMJbzZI1Pchl8Q-0-5a350669ccb9e60a2e1eb6e4dedf2a8e)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P081.jpg?sign=1739565942-NMBvBd1DKuziBAWF0hMUFVxgCG9CPg9C-0-cb707fe52d8d9f774345d59486bfe200)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K。
PR方程用压缩因子方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P093.jpg?sign=1739565942-t4TCXwrVBp5K1c5Pzd1ada2WHRWuWfvh-0-40c1f7c8f5aa77885bd89e59ef2ad5da)
式中,Z=pv/(RT),B=bp/(RT),A=aβp/(RT)2
PR方程计算的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P092.jpg?sign=1739565942-PfFcj2GKKTqJAWWIo9aeGGY5E6hAlAwJ-0-34d5f71132a4bee1f34829288eec4f36)
PR计算式中其他的参数同SRK方程,计算液相逸度系数ϕi,l时,Zi为xi,计算气相逸度系数ϕi时,Zi为yi。
对于纯组分、单相混合物,式中只有1个实根,等于该相的压缩因子;在两相区,有3个实根,最大的为气相的压缩因子,最小的为液相压缩因子,中间无意义。
(3)混合气体的SRK方程
对于多种混合气体成分,SRK方程计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P090.jpg?sign=1739565942-yiKW3ydXgIksCHbzCwhuifShMr4Tvjy7-0-8ae1660d28f091499efccbbf51bd3e7c)
式中 p——平衡分离压力,Pa;
T——平衡分离温度,K;
R——摩尔气体常数,R=8.3145J/(mol·K);
Vm——摩尔体积,m3/mol。
a的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P091.jpg?sign=1739565942-6ewAyiRuy5m83U20YD6B5DnNndpDZFJh-0-0bf277ae6e90ba7c8b0f605450881bf2)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P095.jpg?sign=1739565942-qStPqot9jL6aB4dpzkwBS7pFpZl0KV7J-0-3f5626415fc8baf668d8715666a1bbbc)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P094.jpg?sign=1739565942-H55je1cLrNKZZQCfpSfMlmOx2Ao7hFec-0-0f0b13068ecefa61451fa8b0bbd2876e)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K;
Kij——二元交互作用系数。
b的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P098.jpg?sign=1739565942-Onf4E6SZOpbEg7zOkTDSSgpQzaZmrAZF-0-dbd7c39d7b75183a75f0f5f1fb4add09)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P099.jpg?sign=1739565942-upptXRRSWGgCgePAliW45f3DuoIahNi7-0-84521879c850e5aea0f3a889693b1b5e)
SRK方程的压缩因子方程为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P101.jpg?sign=1739565942-Xhr6vDgvhNeTezGFQmlMlCxW3LHdPEtj-0-654c80dc84d5de23e7d8fb70cc6d1918)
式中,压缩因子Z=pV/(RT) (2-58)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P096.jpg?sign=1739565942-7QxHAGzXW2JXc6U5sdPlapHJNny4f4KL-0-6dd29506b79dd347a22c61658f282372)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P103.jpg?sign=1739565942-gUmEs1ZW6ayynd9I1iywvNPVlW5YDPpt-0-6d7483cb24166b051eacd29ac44daac7)
SRK的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P097.jpg?sign=1739565942-gFKxXwUpztJ3ey3TMA3SyQ2uFJk5y6HR-0-12a3ad7759c23ed58033e369558e6417)
式中,ϕi是组分逸度系数。
在计算中,已知xi、yi时,计算组分i的气相逸度系数ϕiv时,Zi=yi;计算组分i为5的液相逸度系数ϕil时,Zi=xi。