- 初中数学常规竞赛题典(几何)
- 彭林
- 1822字
- 2024-11-28 19:30:58
第三单元 相交线与平行线
夯实基础
1.经过任意三点中的两点共可以画出的直线条数是( ).
A.一条或三条
B.三条
C.两条
D.一条
2.如图,直线a、b相交于点O,若∠1等于40°,则∠2等于( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0021_0001.jpg?sign=1739351765-McOQn0v2Z7rIU7lWUfh7Y3xKRwdhp6su-0-77a8aa684ce100f537e4ccb93d0ac293)
第2题图
A.50°
B.60°
C.140°
D.160°
3.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,若∠FEB=110°,则∠EFD等于( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0021_0002.jpg?sign=1739351765-N8zYBCl2973lGFzybcpS1nKAiisN1Hqa-0-e9a5b40e6d98acc16948651c55a2deb4)
第3题图
A.50°
B.60°
C.70°
D.110°
4.如图所示,∠1=∠2,则下列结论一定成立的是( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0021_0003.jpg?sign=1739351765-DxqwXsqpaeK0UoAREJBGIAorWPzhrGce-0-e93e5681bc289702bf3464dd348c603f)
第4题图
A.AB∥CD
B.A D∥BC
C.∠B=∠D
D.∠3=∠4
5.已知点P在直线l外,点A、B、C均在直线l上,PA=4c m,PB=5c m,PC=2c m,则点P到直线l的距离为( ).
A.2cm
B.小于2cm
C.不大于2cm
D.以上答案均不对
6.跳远测试中,小强在沙坑里落地的脚印(阴影部分)如图所示.E是起跳踏板的中点,A、C分别是过F、D向起跳线所作垂线的垂足.小强的跳远成绩是线段( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0021_0004.jpg?sign=1739351765-5nzGsebyw1sFI3gX0Cq51M5TfzcEcPxs-0-faa034b5dcecdb68cfbdd7aeb4ea633f)
第6题图
A.AF的长
B.CD的长
C.ED的长
D.EB的长
7.如图,已知AB∥CD,若∠1=50°,则∠BAC=________度.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0001.jpg?sign=1739351765-Igj4eEa7rUm1fylOayZnk4ekZjhAFVPd-0-5bafffce2c75d03932b4a55ea642ef61)
第7题图
8.如图所示,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=________度.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0002.jpg?sign=1739351765-yzQ0AafUUPX4GGFREuZpUeAikYCi1elf-0-2d3c4623f298905faf97225b5ab73f07)
第8题图
9.如图所示,如果想要把河中的水引到水池C中,可过点C作AB的垂线段CD,然后沿CD开渠,则能使所开的渠最短,这种设计的理论依据是________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0003.jpg?sign=1739351765-dJxzL76q9qpobl5GjpPBRdxnMdiKB1Pv-0-05df31fd3410c4f77f0140d09e31f4ea)
第9题图
10.如图所示,直线AB和CE相交于点D,且∠1+∠E=180°,你认为直线AB与EF平行吗?说明理由.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0004.jpg?sign=1739351765-D1L11cPYQGQyQnoI7KXdl23wKvP1EFVR-0-6a2fbb85d0a6ff82260f3edeee283577)
第10题图
拓展提高
1.如图所示,AB∥CD,下列结论中正确的是( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0005.jpg?sign=1739351765-Yr3qdYYBlgrRzK3H7kQL16evao78gJHa-0-130cc678ccf96cf326ee3f861ee4404a)
第1题图
A.∠1+∠2+∠3=180°
B.∠1+∠2+∠3=360°
C.∠1+∠3=2∠2
D.∠1+∠3=∠2
2.如图,是赛车跑道的一段示意图,其中AB∥DE,测得∠B=140°,∠D=120°,则∠C的度数为( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0006.jpg?sign=1739351765-Wc5wz4CntDAnAsijokrLN7BnEgyBVhoz-0-06cc15736c3f3aef0a61f8a7fba6646f)
第2题图
A.120°
B.100°
C.140°
D.90°
3.如图所示,D H∥EG∥BC,且DC∥EF,那么图中与∠1相等的角(不包括∠1)的个数是( ).
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0022_0007.jpg?sign=1739351765-fSuQeiz8nJzwFkJhP8mIr8Y345oLet0K-0-be1d189683b6d4ce1798e9f9edbab8c9)
第3题图
A.2个
B.4个
C.5个
D.6个
4.如图所示,已知a∥b∥c,直线d与a、b、c均相交,若∠2=75,∠3=140°,则∠1=________度.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739351765-DxMSdM3x4ZFqoBf7DZOjhAQBYJaqDuTU-0-6fa7a5a0bd3eff050e6f2420b00c67c1)
第4题图
5.如图所示,直线l 1∥l 2,AB⊥l 1,垂足为点O,BC与l 2 相交于点E,∠1=43°,则∠2=________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739351765-nhl3RlLXp2UeW92WKsAF8T55y9e0LIpR-0-61f747e482e0187ed1d700909401e11f)
第5题图
6.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0003.jpg?sign=1739351765-zSyToTm80rnAtaSDyn7ci7paH88L9HXQ-0-24b6ec018c2dd23ed5a2c6e88974ed15)
第6题图
7.如图所示,已知OA⊥OB,OC⊥OD,∠AOC∶∠BOD=1∶2,则∠BOD=_________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0004.jpg?sign=1739351765-82MkrcNKeGfl02PWNDYL1kxY0FyT9Sei-0-cf78999e56ce354a08b969e2d85ecf07)
第7题图
8.如图所示,l1∥l2,试探索图中三个角∠α、∠β、∠γ的数量关系.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0005.jpg?sign=1739351765-DkozKZ2OcSipFDSQRbh2k766LmKxiy9T-0-7a7d5f4a205bfb9ce32536f9707711d4)
第8题图
冲刺竞赛
1.如图所示,已知AB∥CD,则∠B+∠E+∠D=________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0006.jpg?sign=1739351765-yvLlqFNnX5nklqoP5cYsXNgkpioeIr8y-0-fa21f0a6a2f2add5192da76e1a0915d3)
第1题图
2.如图所示,已知FD∥BE,则∠1+∠2-∠3=________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0023_0007.jpg?sign=1739351765-yCPzzWzIwwkit4HUZhP1LgM1MzmG6JHG-0-ea75a7e9be483d38f6ddff4f177d3e2c)
第2题图
3.如图所示,已知BI、CI是∠ABC和∠ACB的三等分线,EF过点I且平行于BC,分别交AB、AC于E、F,∠ABC+∠ACB=111°,则∠BIC=________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739351765-O0MCdCbEDaawttYGOgUFaUc9ifjB5gVa-0-03e0a7a447ffc615b41a337ffe6ae741)
第3题图
4.如图所示,AE∥BD,∠1=4∠2,∠2=23°,则∠C=_________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739351765-qNT9KTXOTkebzJp1KZGTv4aEhz2q4sdk-0-d5d74d84ef527fdc305d2fea00322437)
第4题图
5.如图所示,已知AB∥CD,∠AMP=150°,∠PND=60°,则∠P=_________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0003.jpg?sign=1739351765-XxUEn2zsucqQ68pp9hpItQ0CK1XC4Lme-0-439b8da2c78db2f6f8bbe0f3d9f3035f)
第5题图
6.如图所示,直线BC∥DE,AD⊥DF,∠α=30°,∠β=50°,则∠A=________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0004.jpg?sign=1739351765-Vd0v2Bd0T6IkL3fe0zin8vBH5jMexbW3-0-cf674ce4b770178d6e4b6a6c1b0d7e00)
第6题图
7.如图所示,在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF,求证:∠AGD=∠ACB.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0005.jpg?sign=1739351765-r0szVHrcxf5roTivy1TAfyJ2mKJC3fhP-0-dd8128c46bd4bf6ec014b873c47ca962)
第7题图
8.如图所示,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+∠2=90°,求证:BC⊥AB.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0006.jpg?sign=1739351765-qTFzPiv0MlIcYuRwu1Darrg6mxsLjXV2-0-6157cf8726a128887693045b8c1cc2ec)
第8题图
9.如图所示,已知∠2=∠B,ED∥AC,求证:∠A=∠1.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0024_0007.jpg?sign=1739351765-MT9P3F4tJYubpj0wVaXApYaAb0ZA9d8E-0-b601b393172355f83528701a6efb74d0)
第9题图
10.(1)如图1所示,MA 1∥NA 2,则∠A 1+∠A 2=________度.
如图2所示,MA1∥NA3,则∠A1+∠A2+∠A3=________度.
如图3所示,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=________度.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739351765-cnZfy3RFxloKqyHmuk8xiuI3GpJ2rAGq-0-33ecc3adcff6e655e0dfd6fbe2e8fa88)
第10题图
如图4所示,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=________度.
从上述结论中我们发现,如图5所示,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=________度.
(2)如图1所示,AA1∥BA2,则∠A1,∠A2,∠B1之间的关系为________;
如图2所示,AA1∥BA3,则∠A1,∠A2,∠A3,∠B1,∠B2之间的关系为________;
如图3所示,AA1∥BAn,则∠A1,∠A2,∠A3,…,∠An,∠B1,∠B2,…,Bn-1之间的关系为________.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0025_0002.jpg?sign=1739351765-1yWTsFJCl0dfYryLXR7R2IJOp3g2ZncY-0-55e205801e3c049a665c8077e3664ccc)
第10题图
11.已知,如图所示,AB∥CD,∠1=∠2,∠3=∠4.
求证:EK⊥FK.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0025_0003.jpg?sign=1739351765-MIdsV9risYWIyOJXkh58kbT4yiZE8VMl-0-2c40d4af91b557bf4e7b4462993a4238)
第11题图
12.已知,如图所示,AB∥CD,∠ABF=∠DCE,求证:∠BFE=∠FEC.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0026_0001.jpg?sign=1739351765-Q32Pnu3pHjGTedbPY9cXL2kN9AmJ8OY1-0-49712eee42c401ae6893a9c57577979a)
第12题图
13.如图所示,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0026_0002.jpg?sign=1739351765-53m3l2YaoilGdYoGlFw3FXIopAgkXI0a-0-bb78cc596d918c89fef5fef3c9a40012)
第13题图
14.已知,如图所示,CD∥EF,∠1+∠2=∠ABC,求证:AB∥GF.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0026_0003.jpg?sign=1739351765-ETrFRDlp7HQxlLPWBGjyPiBhDPjmXHFc-0-6359b849e431ecf04a335aa06c3e62af)
第14题图
15.如图所示,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,联结PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角.)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
(3)当动点P落在第③部分时,全面探究∠PAC、∠APB、∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
![](https://epubservercos.yuewen.com/A0AD14/3590527704880401/epubprivate/OEBPS/Images/figure_0027_0001.jpg?sign=1739351765-l22eoWkiRA9Ax7ZbfZMSPLWAI4dOqQ9E-0-8d6c1026117ab996e67f622d1005e999)
第15题图
数学娱乐
谁最吝啬
“你说,世界上谁最吝啬?”
“当然是数学家.”
“为什么?”
“他们是毫厘必争呀!”